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1 Introduction

This report summarizes research done under NASA Grant NAGW-1292 from June 1, 1988

through September 30, 1997. The research performed during this reporting period has been a

collaboration between institutions including the Smithsonian Astrophysical Observatory, the Na-

tional Institute of Standards and Technology, the University of Oregon, and the NASA Langley
Research Center.

The program has included fully line-resolved measurements of submillimeter and far infrared

spectroscopic line parameters (pressure broadening coefficients and their temperature depen-

dences, and line positions) for the analysis of field measurements of stratospheric constituents,

far infrared database improvements, and studies for improved satellite measurements of the

Earth's atmosphere. This research program is designed to enable the full utilization of spec-

tra obtained in far infrared/submillimeter field measurements, such as FIRS-2, FILOS, IBEX,

SLS, EosMLS, and proposed NASA and European Space Agency measurements of C10 and OH

(e.g., PIRAMHYD) for the retrieval of accurate stratospheric altitude profiles of key trace gases
involved in ozone layer photochemistry.

For the analysis of the spectra obtained in the stratosphere from far infrared measurements it

is necessary to have accurate values of the molecular parameters (line positions, strengths, and



pressurebroadeningcoefficients)for themeasuredmolecule,;andfor possibleinterferingspecies.
Knowledgeof fine positionsis in increasinglygoodshape,with somenotableexceptions.The
increasein positioninformationincludesresearchthat hasbeenperformedin the presentpro-
gramof researchon HO2,H20, H202, 03, HC1,HF, HBr, HI, CO,OH, and ClO. Examples
wherefurther finepositionstudiesarenecessaryincludehot bandandminor isotopomerfines
of someof the major trace species(H20, 03) and normal finesof sometriatomic and larger
molecules(NO2). Knowledgeof strengthsis in generallygoodshape,sincemostof the linesare
from electricdipoletransitionswhoseintensitiesarewellde:erminedfrom Starkeffectmeasure-
ments;exceptionsincludesomemoleculeswith largevibration-rotationinteractions(NO2)and
internalmotions(H202abovethe lowest torsional state). The fine parameters that are still the

least well determined are pressure broadening coefficients, and their temperature coefficients.

These are strongly dependent on the quantum states involved in the transitions, in a way that is

much more complex than the simple projection by directional cosine matrix elements involved

in determination of rotational fine strengths from static dipole moments.

The following molecules have now been measured or detected in the atmosphere using far infrared

and milfimeter-wave emission spectroscopy from balloon- and satellite-borne spectrometers: OH,

HO2, H20 (including minor isotopomers and hot band fine.,;), H202, O3p, O2 (including minor

isotopomers), 03 (including minor isotopomers and hot band lines), HOC1, HC1, HF, HBr, CIO,

CO, CO2, N20, NO2, N205, HNO3, C1NO3, and HCN. Many of these species have spectral lines

that are saturated in stratospheric spectra. In these cases, the measured line equivalent widths

are proportional to (fine strength × Lorentz width) 1/2 so that the pressure broadening coefficients

are as important as the line intensities in determining conc_.'ntration profiles. Interpretation of

field measurements for these species have required ongoing measurement programs of pressure

broadening measurements. Other species (HOs, HOC1, H20:, HBr, and NOs, as examples) have

required further fine position studies in order to fully analy;_:e the field measurements.

2 Developmental Work

In the TuFIR technique, tunable far infrared radiation is generated by means of COs laser

difference frequencies in a metal-insulator-metal (MIM) di(,de [1, 2, 3]. This NIST-developed

technique has been demonstrated to be an excellent source of coherent radiation for spectroscopy.

As summarized in reference 2, the technique has been used to measure highly accurate far in-

frared frequencies of stable molecules to serve as frequency and wavelength calibration standards,

and to measure frequencies of transient species for astronomical searches. The general features

of the TuFIR technique are summarized here. In the usual two-wave mixing mode of TuFIR

operation, radiation from two COs lasers is combined on a :)earn splitter and then focussed on

a MIM diode, where the difference frequency (far infrared) :adiation is generated. One laser is



a CO2waveguidelaser,frequency-offsetlockedto a saturatedfluorescencestabilizedCO2 laser.

The second laser is a frequency modulated, saturated fluorescence stabilized CO2 laser. The

FIR radiation is thus also frequency modulated. Phase sensitive detection is used to measure

the modulation-broadened first derivative of the sample absorption. The waveguide CO2 laser

provides a tunability of up to +200 MHz. Acousto-optic modulators operating at 90 MHz are

used to isolate the lasers from the MIM diode and to provide additional wavelength coverage.

By changing pairs of CO2 laser lines we can cover about 80_ of the spectrum between 0.3 and

6 THz. The FIR frequency is known absolutely to +10 KHz [4] and has a spectral purity of

,-,10 KHz. An alternative method of TuFIR operation, three-wave mixing, trades off some of the

FIR power for increased tunability. It is effected by directly mixing two saturated fluorescence
stabilized CO2 laser, along with a tunable microwave source, on the MIM diode. Either TuFIR

mode is capable of providing fully-resolved measurements at the Doppler widths of far infrared

lines, which range from about 0.5 to 20 MHz. The three-wave mixing method is now normally
the preferable method of operation, since the choice of C02 lasing lines is much less constrained

and since the power curve for the tuned FIR radiation is much flatter. Since lines can be fully

resolved by the TuFIR method, linewidths can be measured directly, rather than being inferred

from a curve of growth. The curve of growth method, necessary when the instrument resolution

is coarser than the linewidth, requires that the amount of absorber gas be kept constant. This is

a major difficulty when performing measurements on unstable species such as OH, or on strongly
surface absorbing species such as HC1 or HF.

We have now developed an expertise in ultra-high resolution spectroscopy using the TuFIR
method that includes:

The development of radical source chemistries, allowing us to measure pressure broadening
and line positions of OH, H02 and ClO;

Development of 3-wave mixing, which trades off some of the power available in the tunable

far infrared beam for much wider tunability. For a particular measurement, either 2-wave

or 3-wave mixing can be chosen according to experimental need;

Design and fabrication of spectroscopy cells, a flow-metering system for radical chemistry,
and other laboratory apparatus;

Development of instrument control and data acquisition software, allowing for precise

control of the TuFIR instrument parameters and long integration times for weak spectral
Lines and;

Development of software for nonlinear least-squares fitting of measured spectra to obtain

pressure broadening coefficients and/or line positions, based upon the algorithm of Mar-

quardt [5]. Spectra which have the typical modulation-broadened Voigt derivative line



shape(other line shapeoptionsareavailableas well, includingnormal Voigt and Voigt
secondderivative)arecalculatedusinga completeradiativetransfermodel,includingthe
effectsof line saturationand modulationbroadening.Voigt line profilesand their deriv-
ativesare calculated,with the capability of varying Doppler and Lorentz widths, line
positions,absorberamounts,and baselineand laserpowercurvevariationsmodeledwith
polynomialsup to cubicorder.

Developmentof software to perform multiple linear regressions to obtained line broadening

and/or shifting information from studies employing complex source chemistries.

Development of Hamiltonian fitting capability that includes asymmetric top molecules

with electron spin-rotation interactions, up to high degree in centrifugal distortion, and

nuclear hyperfine (spin-spin dipolar, Fermi contact, and nuclear quadrupole) interactions.

3 Molecule Studies

We have developed a capability for performing spectrosco]?ic measurements on radical species

and on weak lines that is unique. Our laboratory measurements under this program include:

Spectral Standards TuFIR line position measurements of CO, HC1, and HF for use as spectral
standards in the far infrared from 10-200 cm -1 have been determined.

OH Studies of the pressure broadening of the hyperfine-lesolved lines at 118.455 cm -1 and

83.869 cm -1 by N2, 02, H2 and He, and their temperature dependences have been com-

pleted and published. These studies include re-deterndnation of the OH line positions to

higher accuracy. It should be noted that the studies of the 83.869 and 118.455 cm -1 lines

provide all of the necessary quantitative spectroscopic parameters needed for the analy-

sis of OH data from the satellite-based OH measurements currently being proposed by

NASA and ESA. The 118 cm -1 line is the best line _,f the 13 lines measured by FIRS-2

for stratospheric OH measurements. The 83 cm -1 line is the one usually considered for

heterodyne measurements of OH because of the somewhat lower frequency and the avail-

ability of a suitable far infrared laser line of CH3Ot[ to use as a local oscillator. The

studies of OH have also led to the development of ()HIO (OH Interferometer Observa-

tions), a proposed satellite-based instrument that could measure stratospheric OH using

a combination of a single Fabry-Perot resonator and a diffraction grating, with a detector

operated at 80 K. This concept is being pursued in collaboration with the Space Research

Organization of the Netherlands as a potential OH rreasurement device for both NASA

and ESA satellite platforms, and was a component oJ the ESA PIRAMHYD study (OH

profiling by far infrared limb sounding).



HO2 Thepositionsof a numberof H02 lineshavebeendetermined,includingall but oneof the
linesusedfor remotesensingin thefar infraredby the SAO,andthreeof thesix linesused
by IROE. The measuredlineshavebeenincludedin the 1992SAOline parameterdata-
base.A newprogramhasbeenwritten to fit the measuredlinesto a Hamiltonianexpres-
sionincludingspin-rotationandhyperfineinteractionsby full diagonalizationin a parity-
conservingbasisset. The analysisof the measuredspectrum,simultaneouslyfitted with
previousmicrowave,millimeter andsubmillimeterspectra[6, 7], has been completed and

published. The pressure broadening of the HO2 doublet 132,12 -- 121,11, J = 27/2 _- 25/2
at 83.32 cm -1 by N2 and 02 at room temperature was measured in collaboration with the

European Laboratory for Nonlinear Spectroscopy (LENS), in support of potential future

heterodyne measurements in the atmosphere. The results from this investigation have

now been published. Further work to extend the Hamiltonian fitting to higher values of

Ka (up to 9) and N (up to 31) by combining the simultaneous fitting with combination
differences from near infrared measurements of the lowest electronic transition has been

completed and published. This research was done in collaboration with the Steacie Insti-

tute for Molecular Sciences, National Research Council of Canada, and the University of
Ulm.

HC1 Measurements of pressure broadening of the 83.39 cm -1 R3 line of H3sc1, including its

temperature dependence, have been published.

HI We have measured and analyzed the quadrupole-resolved rotational spectrum of HI up to

the Rll lines. HI is of general spectroscopic interest, particularly since it provides a good

example of the rotational dependence of the nuclear quadrupole coupling. In combination

with measurements of the vibrational dependence, the data are used to determine the

electric field gradient at the 12rI nucleus and its first two derivatives with respect to the

internuclear distance. The measurements also provide an accurate value of the 127I nuclear
spin-rotation interaction.

02 Pressure broadening of the 50.87, 60.46, and 83.47 cm -1 lines of 02 has been published. We

have published a critical study on the use of O2 magnetic dipole-allowed rotation lines for

the calibration of far infrared atmospheric measurements.

H20 The N2 and O_ broadening coefficients, and their temperature dependences over the 200-

300 K range, of the H20 line at 88.650 cm -1 have been determined.

03 The N2 and 02 broadening coefficients, and their temperature dependences over the 200-300

K range, of the 03 line at 114.469 cm -1 have been determined.

H202 Detailed positions have been determined for most of lines which are major contributors
to the _tQ4 and RQ5 branches of the lowest torsional band, i.e., the structures which are



currently usedfor atmosphericH202 measurements.

HF Temperature-dependentstudiesof the N2 and 02 broadeningof the HF R3 line at 164
cm-1, usedby FIRS-2andotherinstrumentsfor stra:osphericHF monitoring,havebeen

completed. The data have been analyzed and a publication is currently in preparation.

The study also includes a more accurate determination of the line position.

1992 Smithsonian Astrophysical Observatory Line Parameter Database

The Smithsonian Astrophysical Observatory maintains a line parameter listing for analysis of

atmospheric thermal emission measurements in the far- and mid-infrared which is updated at

frequent inte/'vals. The current version of the listing extends from 10-800 cm -1, and contains

more than 150,000 lines. The listing is modeled on the HITRAN line parameter listing [8], and

contains the best currently available parameters from the HITRAN listing, the JPL Microwave

and SubmiUimeter Line Listing [9], laboratory measurements (including those made under the

present research program), and extensive library research and calculations. The SAO line pa-

rameter listing reflects the fact that we have thoroughly researched every line of every molecule

used in SAO atmospheric measurements and continue to improve the database as atmospheric

measurements require. SAO92 contains, in particular, the line parameters that have enabled

recent stratospheric measurements of H02 [10, 11, 12], H2{)2 [11, 12, 13], HOC1 [12, 14], and

the first measurement of stratospheric HBr [15] to be made. A publication on the database has

appeared in the Journal of Quantitative Spectroscopy and Radiative Transfer [16]. The database

is updated regularly, and is available at http://firs-www.harvard.edu/www/sao92.html.
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